A New Algorithm for Determining the Wind Direction Using Satellite Radiopolarimetric Measurements

 
PIIS020596140003363-0-1
DOI10.31857/S020596140003363-0
Publication type Article
Status Published
Authors
Affiliation: Space Research Institute (IKI RAS)
Address: Russian Federation
Affiliation: Moscow Technological University (MIREA)
Address: Russian Federation
Affiliation: Space Research Institute of the Russian Academy of Sciences
Address: Russian Federation
Journal nameIssledovanie Zemli iz kosmosa
EditionIssue 6
Pages3-12
Abstract

The paper presents an original MicRAWinD algorithm (Microwave Radiometric Algorithm for Wind Direction retrieval) with the help of which it is planned to restore the direction of the near-surface wind in the Space Experiment (SE)“Convergence”. The possibility of determining the direction of the wind from radiometric measurements in the two bands of the radiometer is related to the anisotropy of the surface radiation, which is best appear in the third Stokes parameter. Combining the results of measurements obtained at diff erent frequencies makes it possible to improve the accuracy of restoring the direction of the wind. A new algorithm for increasing the reliability of measurements is proposed, which takes into account the real errors in the measurement of brightness temperatures. The algorithm was tested on the basis of real data obtained by the radiometric system WindSat. The result of the wind direction retrieval according to the developed algorithm was compared with the data obtained from Remote Sensing Systems (RSS). For comparison, a region of the surface with diff erent geophysical parameters was chosen. These parameters are: sea surface temperature, vapor content, wind speed and direction, and the cloud liquid water. The MicRAWinD algorithm solves the direct problem of calculating the radio brightness temperatures on linear ±45° polarizations with the subsequent calculation of the third Stokes parameter for frequencies 37, 18.7 and 10.7 GHz. The initial meteorological parameters for solving a direct problem were the products presented by RSS. The sensitivity of radiometric instruments was taken into account in the modeling process. The solution of the inverse problem and the results of the comparison showed that the developed algorithm retrieves the wind direction with good qualitative agreement, both with the use of radiometric observations at one frequency and with joint multifrequency measurements.

Keywordsremote sensing, radio brightness temperature, azimuthal anisotropy, microwave radiometer, microwave radiation, modeling, wind speed and direction, space experiment «Convergence»
AcknowledgmentThis work was supported by the RFBR grant No. 18-02-01009.
Received27.12.2018
Publication date27.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1108

Readers community rating: votes 0

1. Bespalova E. A., Veselov V. M., Glotov A. A., Militskij Yu. A., Mirovskij V. G., Pokrovskaya Bespalova E. A., Veselov V. M., Gershenzon V. E., Militskij Yu. A., Mirovskij V. G., Pokrovskaya I. V., Raev M. D., Semin A. G., Smirnov N. K., Skachkov V. A., Trokhimovskij Yu. G., Khapin Yu. B., Chistyakov V. N., Sharkov E. A., Ehtkin V. S. Ob opredelenii skorosti pripoverkhnostnogo vetra po izmereniyam polyarizatsionnoj anizotropii sobstvennogo i rasseyannogo SVCh-izlucheniya // Issled. Zemli iz kosmosa. 1982. № 1. S. 87–94.

2. Sadovskij I. N., Sazonov D. S. Opredelenie modulya skorosti pripoverkhnostnogo vetra po dannym mnogochastotnogo radiometra-spektrometra MIRS // Pyatnadtsataya vsers. otkr. ezheg. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». Tez. dokl. M.: IKI RAN, 2017. S. 501.

3. Sazonov D. S., Kuz'min A. V., Sadovskij I. N. Issledovanie azimutal'noj anizotropii sobstvennogo radioteplovogo izlucheniya vzvolnovannoj vodnoj poverkhnosti v ehksperimentakh CAPMOS: Preprint IKI RAN Pr-2170. 2013. S. 23.

4. Sazonov D. S. Azimutal'naya izmenchivost' radioizlucheniya vzvolnovannoj vodnoj poverkhnosti na osnove izmerenij v mikrovolnovom diapazone // Pyatnadtsataya vseros. otkr. ezheg. Konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». Tez. dokl. M.: IKI RAN, 2017. S. 301.

5. Sterlyadkin V.V., Sazonov D.S., Pashinov E.V., Kuz'min A.V. Opisanie algoritma opredeleniya napravleniya poverkhnostnogo vetra po radiometricheskim izmereniyam iz kosmosa // Pyatnadtsataya vseros. otkr. ezheg. Konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». Tez. dokl. M.: IKI RAN, 2017. S. 468.

6. Sharkov E. A. Nauchnye zadachi kosmicheskogo ehksperimenta «Konvergentsiya» na RS MKS // Pyatnadtsataya vseros. otkr. ezheg. konf. «Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa». Tez.dokl. M.: IKIRAN, 2017. S. 230.

7. Freilich M. H., Dunbar R. S. The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys // J. Geophys. Res. 1999. V. 104. R. 11 231–11 246.

8. Gaiser P. W., St Germain K. M., Twarog E. M., Poe G. A., Purdy W., Richardson D., Grossman W., Jones W. L., Spencer D., Golba G., Cleveland J., Choy L., Bevilacqua R. M., Chang P. S. The WindSat space borne polarimetric microwave radiometer: sensor description and early orbit performance // IEEE Trans. Geosci. Rem. Sens. 2004. V.42. № 11. R. 2347–2361.

9. Meissner T., Wentz F. J. The complex dielectric constant of pure and sea water from microwave satellite observations // IEEE Trans. Geosci. Rem. Sens. Sep. 2004. V. 42. № 9. R. 1836–1849.

10. Meissner T., Wentz F. J. The Emissivity of the Ocean Surface Between 6 and 90 GHz Over a Large Range of Wind Speeds and Earth Incidence Angles // IEEE Trans. Geosci. Rem. Sens. Aug. 2012. V. 50. № 8. R. 3004–3026.

11. Monaldo F. Expected differences between buoy and radar altimeter estimates of wind speed and signifi cant wave height and their implications on buoy-altimeter comparisons // J. Geophys. Res. 1988. V. 93. R. 2285–2303.

12. Narvekar P. S., Heygster G., Tonboe R. Analysis of WindSat data over Arctic Sea ice. Final Vers. Technical rep. for the EUMETSAT satellite application facility on ocean and sea ice // Vis. Sci. Activity SG08-VSQ1: Investigations into use of passive polarimetric microwave radiometry for sea ice retrieval. Rev. 1. Bremen, 2008.

13. Wentz F. J., Meissner T. AMSR ocean algorithm. Vers. 2. Rem. Sens. Syst., Santa Rosa, CA, 121 599A-1, 2000. [Online]. Available: http://www.remss.com/pa-pers/amsr/AMSR_Ocean_Algorithm_Version_2.pdf.

Система Orphus

Loading...
Up