Термические и магнитные свойства маггемита γ-Fe2O3, синтезированного прекурсорным способом

 
Код статьиS086956520001743-0-1
DOI10.31857/S086956520001743-0
Тип публикации Статья
Статус публикации Опубликовано
Авторы
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Адрес: Российская Федерация,
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Адрес: Российская Федерация,
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Адрес: Российская Федерация,
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Адрес: Российская Федерация,
Аффилиация:
ФГБУН Институт физики металлов им. М.Н. Михеева УрО РАН
Уральский федеральный университет им. Б.Н. Ельцина
Адрес: Российская Федерация,
Аффилиация: Уральский федеральный университет им. Б.Н. Ельцина
Адрес: Российская Федерация,
Аффилиация: ФГБУН Институт химии твердого тела УрО РАН
Адрес: Российская Федерация,
Название журналаДоклады Академии наук
ВыпускТом 481 Номер 4
Страницы386-390
Аннотация

Низкоразмерный ферромагнитный маггемит γ–Fe2O3 синтезирован по прекурсорной методике c использованием основного формиата железа Fe(OH)(HCOO)2 в качестве прекурсора. Определены условия образования γ–Fe2O3 и температурная область его существования при нагревании на воздухе. Значения намагниченности насыщения образца γ–Fe2O3, полученного путём нагревания прекурсора при 350oC, составляют 57,5 (T = 4,2 K) и 43,8 ЭМЕ/Г (T = 300 K).

Ключевые слова
Источник финансированияАвторы выражают благодарность Е.Г. Герасимову за ценные замечания и обсуждение результатов по магнитным свойствам. Работа выполнена в рамках государственного задания ФАНО России (планы НИР ИХТТ УрО РАН №№ A16–116122810209–5; A16–116122810214–9; A16–116122810212–5, тема «Спин», № 01201463330) и Правительства Российской Федерации (постановление № 211, контракт № 02.A03.21.0006).
Получено15.10.2018
Дата публикации28.10.2018
Цитировать   Скачать pdf Для скачивания PDF необходимо авторизоваться
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной.

всего просмотров: 1438

Оценка читателей: голосов 0

1. Zhong L.S., Hu J.S., Liang H.P., et al. // Adv. Mater. 2006. V. 18. P. 2426–2431.

2. Wang L., Li G., Liu J., et al. // Synthetic Metals. 2016. V. 221. P. 284–290.

3. Nikumbh A.K., Latkar A.A., Phadke M.M. // Thermochim. Acta. 1993. V. 219. P. 269-282.

4. Mud S., Gotic M., Popovic S. // Mater. Lett. 1994. V. 20. P. 143-148.

5. Gong C., Chen D., Jiao X. // J. Sol-Gel Sci. Technol. 2005. V. 35. P. 77–82; 2016. V. 253. P. 2209-2216.

6. Krasil’nikov V.N., Baklanova I.V., Zhukov V.P., et al. // J. Alloys Compd. 2017. V. 698. P. 1102-1110.

7. Garron A., Epron F. // Water Res. 2005. V. 39. P. 3073–3081.

8. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Prt B: Applications in coordination, organometallic, and bioinorganic chemistry. N.Y.: Wiley, 2009. 424 p.

9. Ye X., Lin D., Jiao Z., Zhang L. // J. Phys. D. 1998. V. 31. P. 2739–2744.

10. Mahmoud W.E., Al-Hazmi F., Al-Noaiser F., et al. // Superlattices and Microstructures. 2014. V. 68. P. 1–5.

11. Wu W., Xiao X.H., Zhang S.F., et al. // Nanoscale Res. Lett. 2010. V. 5. P. 1474–1479.

12. Guivar J.A.R., Martínez A.I., Anaya A.O., et al. // Adv. Nanoparticles. 2014. V. 3. P. 114-121.

13. Frison R., Cernuto G., Cervellino A., Zaharko O., Colonna G.M., Guagliardi A., Masciocchi N. // Chem. Mater. 2013. V. 25. P. 4820-4827.

14. Петинов В.И. // ЖТФ. 2014. Т. 84. С. 8-17.

15. Jing Z.H., Wu S.H. // J. Solid State Chem. 2004. V. 177. P. 1213-1218.

Система Orphus

Загрузка...
Вверх