Death Mechanism of Breast Adenocarcinoma Cells, Caused by BRET-Induced Cytotoxicity of miniSOG, Depends on Intracellular Localization of Hybrid Protein NanoLuc-miniSOG

 
PIIS086956520002961-0-1
DOI10.31857/S086956520002961-0
Publication type Article
Status Published
Authors
Affiliation: Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
Address: Russian Federation, Moscow
Affiliation: Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, RAS
Address: Russian Federation, Moscow
Affiliation:
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS
Lobachevsky State University of Nizhni Novgorod
Address: Russian Federation, Moscow
Affiliation: Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS
Address: Russian Federation, Moscow
Journal nameDoklady Akademii nauk
EditionVolume 482 Issue 6
Pages732-735
Abstract

Photodynamic therapy (PDT) is widely used in clinical practice to influence neoplasms in the presence of a photosensitizer, oxygen and light source. The main problem of PDT of deep tumors is the problem of delivering excitation light (without lost of its intensity) inside the body. An alternative to external light sources can be "internal" light sources based on bioluminescent systems of luciferase-substrate. In our work, as an internal light source, we used the NanoLuc-furimazine system. This system can be successfully used to excite the protein photosensitizer miniSOG and to induce the photo toxicity of this flavoprotein in cancer cells during bioluminescent resonance energy transfer (BRET). It was shown that the mechanism of cell death caused by BRET-induced phototoxicity of mimiSOG in the presence of furimazine depends on the intracellular localization of the NanoLuc-miniSOG fusion protein: BRET-mediated activation of miniSOG in mitochondrial localization causes apoptosis, while membrane localization of PS causes necrosis of cancer cells.

Keywords
Received07.12.2018
Publication date13.12.2018
Cite   Download pdf To download PDF you should sign in
Размещенный ниже текст является ознакомительной версией и может не соответствовать печатной

views: 1200

Readers community rating: votes 0

1. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M., Moan J., Mroz P., Nowis D., Piette J., Wilson B.C., Golab J. // CA Cancer J. Clin. 2011. Vol. 61, N 4. P. 250—281.

2. Fabris C., Valduga G., Miotto G., Borsetto L., Jori G., Garbisa S., Reddi E. // Cancer Res. 2001. Vol. 61, N 20. P. 7495—7500.

3. Girotti A.W. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. // J. Photochem. Photobiol. 2001. Vol. 63, N 1-3. P. 103—113.

4. Hall M.P., Unch J., Binkowski B.F., Valley M.P., Butler B.L., Wood M.G., Otto P., Zimmerman K., Vidugiris G., Machleidt T., Robers M.B., Benink H.A., Eggers C.T., Slater M.R., Meisenheimer P.L., Klaubert D.H., Fan F., Encell L.P., Wood K.V. // ACS Chem. Biol. 2012. Vol. 7, N 11. P. 1848—1857.

5. Juarranz A., Jaen P., Sanz-Rodriguez F., Cuevas J., Gonzalez S. // Clin. Transl. Oncol. 2008. Vol. 10, N 3. P. 148—154.

6. Kessel D., Poretz R.D. Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME). // Photochem. Photobiol. 2000. Vol. 71, N 1. P. 94—96.

7. Moan J., Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. // Photochem. Photobiol. 1991. Vol. 53, N 4. P. 549—553.

8. Ryumina A.P., Serebrovskaya E.O., Shirmanova M.V., Snopova L.B., Kuznetsova M.M., Turchin I.V., Ignatova N.I., Klementieva N.V., Fradkov A.F., Shakhov B.E., Zagaynova E.V., Lukyanov K.A., Lukyanov S.A. // Biochim Biophys Acta. 2013. Vol. 1830, N 11. P. 5059-5067.

9. Segawa K., Nagata S. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure. // Trends Cell Biol. 2015. Vol. 25, N 11. P. 639-650.

10. Shu X., Lev-Ram V., Deerinck T.J., Qi Y., Ramko E.B., Davidson M.W., Jin Y., Ellisman M.H., Tsien R.Y. // PLoS Biol. 2011. Vol. 9, N 4. e1001041.

11. van Straten D., Mashayekhi V., de Bruijn H.S., Oliveira S., Robinson D.J. // Cancers (Basel). 2017. Vol. 9, N 2. pii: E19.

12. Vantieghem A., Xu Y., Declercq W., Vandenabeele P., Denecker G., Vandenheede J.R., Merlevede W., de Witte P.A., Agostinis P. Different pathways mediate cytochrome c release after photodynamic therapy with hypericin. // Photochem. Photobiol. 2001. Vol. 74, N 2. P.133—142.

13. Zamzami N., Kroemer G. Apoptosis: mitochondrial membrane permeabilization--the (w)hole story? // Curr. Biol. 2003. Vol. 13, N 2. P. 71—73.

14. Shramova E.I., Proshkina G.M., Deev S.M., Petrov R.V. Fotoindutsirovannaya tsitotoksichnost' flavoproteida miniSOG, vyzvannaya biolyuminestsentnym rezonansnym perenosom ehnergii, zavisit ot ego vnutrikletochnoj lokalizatsii. // DAN. 2017. T. 474, № 5. S. 633—636.

15. Shramova E.I., Proshkina G.M., Chumakov S.P., Khodarovich Yu.M., Deev S.M. Induktsiya fototoksichnosti flavoproteida miniSOG posredstvom biolyuminestsentnogo rezonansnogo perenosa ehnergii. // Acta Naturae. 2016. T. 8, № 4. S. 127—133.

Система Orphus

Loading...
Up